

# **Pumping elements**

**Type PEH** 1000 bar 0,16 to 1,23 cm<sup>3</sup>/stroke

## **Features**

- Self venting
- Self priming
- High reliability
- In radial piston pumps, the direction of flow is independent of the direction of rotation of the actuator
- Very high efficiency due to high manufacturing accuracy



## **Applications**

- For manually operated pumps in which the pump element is actuated by a lever
- For pumps in radial design with an eccentric shaft bearing as drive
- The pump element must always be immersed in the medium

## Design

- Consists of a cylinder with built-in check valves in the suction and the pressure port, a piston and a piston return spring
- The medium is sucked in at the front, the pressure outlet is at the side of the piston movement
- The direction of flow is determined by the suction and outlet valves and cannot be reversed

## **Technical Data**

| Hydraulic fluid                                            | mineral oil according to DIN 51524<br>(other fluids on request)     |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
| Fluid temperature range                                    | -20 to 80 °C                                                        |  |  |  |
| Viscosity range                                            | 5 to 220 mm <sup>2</sup> /s                                         |  |  |  |
| Max. operating pressure                                    | 1000 bar (see overview "Product information")                       |  |  |  |
| Max. speed                                                 | 2000 to 3600 rpm (see overview "Product information")               |  |  |  |
| Filtration (recommendation)                                | according to NAS 1638 class 6 resp. ISO/DIN 4406 17/15/12           |  |  |  |
| Installation position                                      | any                                                                 |  |  |  |
| Suction                                                    | -0.042 bar (gives max. 500 mm of suction height with hydraulic oil) |  |  |  |
| Fixation screws<br>(not included in the scope of supplier) | M10 x 30<br>quality 8.8<br>tightening torque 40 Nm                  |  |  |  |
| Weight                                                     | see overview "Product information"                                  |  |  |  |
| Material                                                   | piston: hardened steel<br>cylinder: heat treated steel              |  |  |  |

#### Туре РЕН

# Type code



## **Product information**

| size | piston Ø | max.<br>stroke | max. geom.<br>displacement | max.<br>rotation | max.<br>flow rate at | max.<br>operating | piston<br>force | weight | part. nr. |
|------|----------|----------------|----------------------------|------------------|----------------------|-------------------|-----------------|--------|-----------|
|      | [mm]     | [mm]           | [cm <sup>3</sup> /stroke]  | speea<br>[rpm]   | [l/min]              | pressure<br>[bar] | [N/bar]         | [g]    |           |
| 05   | 5        | 8              | 0,16                       | 3600             | 0,23                 | 1000              | 1,96            | 156    | 4000832   |
| 06   | 6        | 8              | 0,23                       | 3600             | 0,33                 | 1000              | 2,83            | 156    | 4000835   |
| 08   | 8        | 8              | 0,40                       | 2000             | 0,58                 | 1000              | 5,03            | 159    | 4000838   |
| 09   | 9        | 8              | 0,51                       | 2000             | 0,74                 | 1000              | 6,36            | 160    | 4000841   |
| 10   | 10       | 8              | 0,63                       | 2000             | 0,91                 | 900               | 7,85            | 161    | 4000844   |
| 12   | 12       | 8              | 0,91                       | 2000             | 1,31                 | 850               | 11,31           | 161    | 4000850   |
| 14   | 14       | 8              | 1,23                       | 2000             | 1,78                 | 100               | 15,38           | 159    | 4474908   |

## Mounting





## **Dimensional drawing**





#### Layout



#### **Calculation of driving motor power**

$$P = \frac{p \cdot V_g \cdot n \cdot k}{\eta_s \cdot 600 \cdot 10^3}$$

- P required driving power [kW]
- p system pressure [bar]
- V<sub>G</sub> displacement [cm<sup>3</sup>/stroke]
- n rotation speed [rpm]
- $\eta_t$  efficiency, approx. 0.8
- k kinematic pulsation factor

#### **Calculation of the piston force**

Check the Hertzian stress at the contact line between piston and the excentric bearing. Set the piston diameter "d" as diameter of the piston surface.

Force generated by the pressure of each piston:

 $F_{\mu} = 0.0785 \cdot d^2 \cdot p = R [N/bar] \cdot p [N]$ 

- $F_H$  hydraulic force per piston [N]
- d diameter of piston [mm]p system pressure [bar]
- R piston force per 1 bar [N/bar]

## **Calculation of the bearing loads**

It is required to calculate the bearing's expected life. The resulting load on the excentric bearing is a function of the number of pistons:

 $F_{R} = f \cdot F_{H}$ 

- $F_{_{\rm R}}$  total load on the eccentric [N]
- $F_{\mu}^{R}$  hydraulic force per piston [N]
- geom. load multiplication factor

#### **Piston loads**

Keep in mind that the piston forces are concentrated on single points around the outer ring of the bearing, submitting the latter to bending loads. With large piston diameters, high pressure and few pistons it may be advisable to fit a bearing with a thicker outer ring (e. g. cam follower).

## Accessories

| Item description                                    | part. no. |
|-----------------------------------------------------|-----------|
| 1 x socket head screw ISO 4762 - M10 x 30 - 8.8-A3B | 6072101   |

#### **Bieri Hydraulik AG**

Könizstrasse 274 CH-3097 Liebefeld Tel. +41 31 970 09 09 | Fax +41 31 970 09 10 info@bierihydraulics.com | www.bierihydraulics.com The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department. Subject to technical modifications.